THALES

Improving training with physiological monitoring

JEAN-FRANÇOIS GAGNON, PH.D.

www.thalesgroup.com

OPEN

How can we use similar technology in training context?

- Measure engagement
 - Ensure trainees are engaged in all contexts, including simulations
- Validate scenarios
 - Quantify the effect of various scenarios
- Characterize individual profiles
 - Track progress of trainees with stress management skills
 - Link profiles with outcomes

Autonomic Nervous System (ANS)

Sympathetic NS "Arouses" (fight-or-flight)

Parasympathetic NS "Calms" (rest and digest)

Sensors can assess activation of humans

- Task difficulty
 - > Parallel parking
- Tool
 - Jeep
- **Expertise**
 - > Teen (low)
 - > Adult (high)

Initial Pilot In-Flight Training

Platform & Pilots Protection

Performance Readiness Dashboard Longitudinal

"Ease in flight" model

Method

- 6 acrobatic flights (~1 hr, GROB 120)
- 5 Tandems (Instructor/Cadet) + 1 instructor
- Cadet reproduces the maneuver performed by the instructor

Data

- ECG (Bio Harness)
- Contextual (altitude, velocity..)

THALES

Results This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales - © Thales 2015 All rights reserved. Heart Rate in bpm Instructor vs Trainee Heart Rate in bpm Expert Novice 10:30 10:45 11:00 10:00 10:15 Time OPEN Name of the company/Template: 87204467-DOC-GRP-EN-002

Aggregating data from multiple instructors to create an expert reference model.

OPEN

THALES

How can we use similar technology in this context? (reminder)

Measure engagement

> Ensure trainees are engaged in all contexts, including simulations

Validate scenarios

Quantify the effect of various scenarios

Characterize individual profiles

- > Track progress of trainees with stress management skills
- Link profiles with outcomes

ENPQ Experiment

Method

- > 27 trainees
- > SAIR (simulator) vs real shooting

Data

- ECG/respiration (Bio Harness)
- > Fitbit for baseline

Real vs simulated

- Real context significantly more « stressful »
- > Is simulation engaging enough?
 - Compare with baseline

t(36) = 3.795, p < .001mean of real 93 bpm mean of simulated 82 bpm

THALES

ENPQ - Engagement

Simulation

Can generate significant levels of activation

Sources of activation

- Emotionally loaded scenarios
- Peers are observing
- Realism increases engagement

ENPQ – Individual profiles

Different profiles

- Linked with performance?
- Can this information be used for individualization?

Real

With individualization

Research

- > Evaluate the impact of
 - Changes in cursus
 - Other technologies
 - VR, AR, etc.
- > Evaluate benefits of individualization
- **Technology**
 - Sensors
 - Data management